Mathematical Models in Biology

Mathematical Models in Biology
Title Mathematical Models in Biology PDF eBook
Author Leah Edelstein-Keshet
Publisher SIAM
Pages 629
Release 1988-01-01
Genre Mathematics
ISBN 9780898719147

Download Mathematical Models in Biology Book in PDF, Epub and Kindle

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.




A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution
Title A Biologist's Guide to Mathematical Modeling in Ecology and Evolution PDF eBook
Author Sarah P. Otto
Publisher Princeton University Press
Pages 745
Release 2011-09-19
Genre Science
ISBN 1400840910

Download A Biologist's Guide to Mathematical Modeling in Ecology and Evolution Book in PDF, Epub and Kindle

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available




Mathematical Models in Biology

Mathematical Models in Biology
Title Mathematical Models in Biology PDF eBook
Author Elizabeth Spencer Allman
Publisher Cambridge University Press
Pages 388
Release 2004
Genre Mathematics
ISBN 9780521525862

Download Mathematical Models in Biology Book in PDF, Epub and Kindle

This introductory textbook on mathematical biology focuses on discrete models across a variety of biological subdisciplines. Biological topics treated include linear and non-linear models of populations, Markov models of molecular evolution, phylogenetic tree construction, genetics, and infectious disease models. The coverage of models of molecular evolution and phylogenetic tree construction from DNA sequence data is unique among books at this level. Computer investigations with MATLAB are incorporated throughout, in both exercises and more extensive projects, to give readers hands-on experience with the mathematical models developed. MATLAB programs accompany the text. Mathematical tools, such as matrix algebra, eigenvector analysis, and basic probability, are motivated by biological models and given self-contained developments, so that mathematical prerequisites are minimal.




Mathematical Modeling in Systems Biology

Mathematical Modeling in Systems Biology
Title Mathematical Modeling in Systems Biology PDF eBook
Author Brian P. Ingalls
Publisher MIT Press
Pages 423
Release 2022-06-07
Genre Science
ISBN 0262545829

Download Mathematical Modeling in Systems Biology Book in PDF, Epub and Kindle

An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.




A Primer in Mathematical Models in Biology

A Primer in Mathematical Models in Biology
Title A Primer in Mathematical Models in Biology PDF eBook
Author Lee A. Segel
Publisher SIAM
Pages 435
Release 2013-05-09
Genre Science
ISBN 1611972493

Download A Primer in Mathematical Models in Biology Book in PDF, Epub and Kindle

A textbook on mathematical modelling techniques with powerful applications to biology, combining theoretical exposition with exercises and examples.




Explorations of Mathematical Models in Biology with MATLAB

Explorations of Mathematical Models in Biology with MATLAB
Title Explorations of Mathematical Models in Biology with MATLAB PDF eBook
Author Mazen Shahin
Publisher John Wiley & Sons
Pages 249
Release 2013-12-24
Genre Science
ISBN 1118548531

Download Explorations of Mathematical Models in Biology with MATLAB Book in PDF, Epub and Kindle

Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MATLAB, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with MATLAB provides an introduction to model creation using MATLAB, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional MATLAB codes Explorations of Mathematical Models in Biology with MATLAB is an ideal textbook for upper-undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.




Mathematical Models in Population Biology and Epidemiology

Mathematical Models in Population Biology and Epidemiology
Title Mathematical Models in Population Biology and Epidemiology PDF eBook
Author Fred Brauer
Publisher Springer Science & Business Media
Pages 432
Release 2013-03-09
Genre Science
ISBN 1475735162

Download Mathematical Models in Population Biology and Epidemiology Book in PDF, Epub and Kindle

The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.